The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Artificial intelligence is to teach machines to take actions like humans. To achieve intelligent teaching, the machine learning community becomes to think about a promising topic named machine teaching where the teacher is to design the optimal (usually minimal) teaching set given a target model and a specific learner. However, previous works usually require numerous teaching examples along with large iterations to guide learners to converge, which is costly. In this paper, we consider a more intelligent teaching paradigm named one-shot machine teaching which costs fewer examples to converge faster. Different from typical teaching, this advanced paradigm establishes a tractable mapping from the teaching set to the model parameter. Theoretically, we prove that this mapping is surjective, which serves to an existence guarantee of the optimal teaching set. Then, relying on the surjective mapping from the teaching set to the parameter, we develop a design strategy of the optimal teaching set under appropriate settings, of which two popular efficiency metrics, teaching dimension and iterative teaching dimension are one. Extensive experiments verify the efficiency of our strategy and further demonstrate the intelligence of this new teaching paradigm.
translated by 谷歌翻译
Weakly-supervised text classification aims to train a classifier using only class descriptions and unlabeled data. Recent research shows that keyword-driven methods can achieve state-of-the-art performance on various tasks. However, these methods not only rely on carefully-crafted class descriptions to obtain class-specific keywords but also require substantial amount of unlabeled data and takes a long time to train. This paper proposes FastClass, an efficient weakly-supervised classification approach. It uses dense text representation to retrieve class-relevant documents from external unlabeled corpus and selects an optimal subset to train a classifier. Compared to keyword-driven methods, our approach is less reliant on initial class descriptions as it no longer needs to expand each class description into a set of class-specific keywords. Experiments on a wide range of classification tasks show that the proposed approach frequently outperforms keyword-driven models in terms of classification accuracy and often enjoys orders-of-magnitude faster training speed.
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
Surgical activity recognition and prediction can help provide important context in many Robot-Assisted Surgery (RAS) applications, for example, surgical progress monitoring and estimation, surgical skill evaluation, and shared control strategies during teleoperation. Transformer models were first developed for Natural Language Processing (NLP) to model word sequences and soon the method gained popularity for general sequence modeling tasks. In this paper, we propose the novel use of a Transformer model for three tasks: gesture recognition, gesture prediction, and trajectory prediction during RAS. We modify the original Transformer architecture to be able to generate the current gesture sequence, future gesture sequence, and future trajectory sequence estimations using only the current kinematic data of the surgical robot end-effectors. We evaluate our proposed models on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and use Leave-One-User-Out (LOUO) cross-validation to ensure the generalizability of our results. Our models achieve up to 89.3\% gesture recognition accuracy, 84.6\% gesture prediction accuracy (1 second ahead) and 2.71mm trajectory prediction error (1 second ahead). Our models are comparable to and able to outperform state-of-the-art methods while using only the kinematic data channel. This approach can enable near-real time surgical activity recognition and prediction.
translated by 谷歌翻译
Recently, discrete latent variable models have received a surge of interest in both Natural Language Processing (NLP) and Computer Vision (CV), attributed to their comparable performance to the continuous counterparts in representation learning, while being more interpretable in their predictions. In this paper, we develop a topic-informed discrete latent variable model for semantic textual similarity, which learns a shared latent space for sentence-pair representation via vector quantization. Compared with previous models limited to local semantic contexts, our model can explore richer semantic information via topic modeling. We further boost the performance of semantic similarity by injecting the quantized representation into a transformer-based language model with a well-designed semantic-driven attention mechanism. We demonstrate, through extensive experiments across various English language datasets, that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
translated by 谷歌翻译
The task of Compositional Zero-Shot Learning (CZSL) is to recognize images of novel state-object compositions that are absent during the training stage. Previous methods of learning compositional embedding have shown effectiveness in closed-world CZSL. However, in Open-World CZSL (OW-CZSL), their performance tends to degrade significantly due to the large cardinality of possible compositions. Some recent works separately predict simple primitives (i.e., states and objects) to reduce cardinality. However, they consider simple primitives as independent probability distributions, ignoring the heavy dependence between states, objects, and compositions. In this paper, we model the dependence of compositions via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility relations between simple primitives, e.g., \textit{hairy} is more feasible with \textit{cat} than with \textit{building} in the real world. Contextuality-dependence represents the contextual variance in images, e.g., \textit{cat} shows diverse appearances under the state of \textit{dry} and \textit{wet}. We design Semantic Attention (SA) and generative Knowledge Disentanglement (KD) to learn the dependence of feasibility and contextuality, respectively. SA captures semantics in compositions to alleviate impossible predictions, driven by the visual similarity between simple primitives. KD disentangles images into unbiased feature representations, easing contextual bias in predictions. Moreover, we complement the current compositional probability model with feasibility and contextuality in a compatible format. Finally, we conduct comprehensive experiments to analyze and validate the superior or competitive performance of our model, Semantic Attention and knowledge Disentanglement guided Simple Primitives (SAD-SP), on three widely-used benchmark OW-CZSL datasets.
translated by 谷歌翻译
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
现有的假新闻检测方法旨在将新闻分类为真或错误,并提供真实的解释,从而实现出色的表现。但是,他们经常根据有限的新闻报道和揭穿延误来定制手动事实检查报告的自动解决方案。如果尚未对一段新闻进行事实检查或揭穿事实,通常会在各种媒体上传播一定数量的相关原始报告,其中包含人群的智慧来验证新闻声明并解释其判决。在本文中,我们提出了一个新颖的粗到十五级别的级联证据依据(COFCED)神经网络,以根据此类原始报告来解释假新闻检测,从而减轻了对事实检查的依赖性。具体而言,我们首先使用层次结构编码器来用于Web文本表示,然后开发两个级联的选择器,以粗略至上的方式在所选的Top-K报告之上选择最可解释的句子。此外,我们构建了两个可解释的假新闻数据集,这些数据集可公开使用。实验结果表明,我们的模型显着优于最先进的基线,并从不同的评估角度产生高质量的解释。
translated by 谷歌翻译